http://e-journal.sastra-unes.com/slot-gacor/ https://165.22.244.0/https://www.rtpslotgacor.cc/https://enfermeriadermatologica.org/slot-gacor/gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88gacor 88 https://sastra-unes.com/files/site/slot-deposit-pulsa/ http://newbmn.asmu.ru/public/journals/1/slot-gacor/ http://ctdn.kubg.edu.ua/wp-content/uploads/2019/09/slot-gacor/ https://cce2020.oiu.edu.sd/.well-known/ https://archive.euroasia-science.ru/.well-known/ https://nt.uhsp.edu.ua/wp-content/uploads/2019/06/slot-gacor/ https://sites.google.com/view/pastigacor88/kumpulan-daftar-12-situs-judi-slot-gacor-terbaru-2022 https://ijhsc.com/public/journals/1/slot-gacor/ https://alumni.forest.ku.ac.th/js/slot-gacor/ http://pkc.grsmu.by/assets/slot-gacor/ https://sastra-unes.com/files/site/slot-deposit-pulsa/ http://newbmn.asmu.ru/public/journals/1/slot-gacor/ http://ctdn.kubg.edu.ua/wp-content/uploads/2019/09/slot-gacor/ https://www.fundacionclavel.org/slot-gacor/ https://cce2020.oiu.edu.sd/.well-known/ https://rebradir.anajure.org.br/files/site/slot88/ http://visitas.facmais.edu.br/ http://vestibular.facmais.edu.br/ http://social.facmais.edu.br/ https://profor.facmais.edu.br/ http://www.ijceas.com/public/journals/1/slot-pulsa/ https://www.spr.org.br/din/eventos/-/slot-online/ https://bio-med.euroasia-science.ru/public/journals/1/slot-deposit-pulsa/ http://slovopys.kubg.edu.ua/wp-content/uploads/2019/09/slot88/ http://e-journal.sastra-unes.com/public/journals/1/slot-deposit-dana/ http://radio-bg.kubg.edu.ua/wp-content/uploads/2019/09/slot88/ http://library.sastra-unes.com/files/site/slot88/ https://socsc.ui.edu.ng/wp-content/uploads/2019/slot-gacor/ https://submissoesic.propes.ufabc.edu.br/public/journals/9/slot-gacor/ https://pedomanwisata.com/ https://ajpssi.org/public/journals/1/slot88/ https://rsujet.rsu.ac.th/asset/images/captcha/ http://library.nmuofficial.com/ https://revista-uem.uno/public/journals/1/slot-deposit-pulsa/ https://uimscics.ui.edu.ng/wp-content/uploads/2021/09/slot-deposit-pulsa/ http://alumni.sastra-unes.com/public/journals/1/slot-deposit-pulsa/ https://thedanipost.com/wp-content/uploads/2020/09/slot88/ http://www.dergi-fytronix.com/files/site/ https://kkuic.kku.ac.th/img_up/alfacgiapi/slot88/ https://aedsh.kku.ac.th/wp-content/uploads/2019/slot-deposit-pulsa/ https://cloud-journals.com/images/slot-deposit-pulsa/ https://interrev.com/public/journals/1/slot88/ https://anais.faama.edu.br/public/journals/3/slot88/ https://library.phdpu.edu.ua/slot88/ http://uad-jrnl.nau.in.ua/public/journals/1/slot88/ https://library.uhsp.edu.ua/wp-content/uploads/2022/02/slot-deposit-pulsa/ https://fastgrowingtree.forest.ku.ac.th/ https://ojs.escoladacidade.org/public/journals/5/slot-gacor/ http://visitas.facmais.edu.br/ http://vestibular.facmais.edu.br/ http://social.facmais.edu.br/ https://profor.facmais.edu.br/ http://www.ijceas.com/public/journals/1/slot-pulsa/ https://www.spr.org.br/din/eventos/-/slot-online/ https://bio-med.euroasia-science.ru/public/journals/1/slot-deposit-pulsa/ https://vestnik.alt.edu.kz/public/site/slot-deposit-pulsa/ http://slovopys.kubg.edu.ua/wp-content/uploads/2019/09/slot88/ http://e-journal.sastra-unes.com/public/journals/1/slot-deposit-dana/ http://radio-bg.kubg.edu.ua/wp-content/uploads/2019/09/slot88/ http://library.sastra-unes.com/files/site/slot88/ https://journal.uvers2.ac.id/public/journals/1/slot777/ https://socsc.ui.edu.ng/wp-content/uploads/2019/slot-gacor/ https://submissoesic.propes.ufabc.edu.br/public/journals/9/slot-gacor/ https://pedomanwisata.com/ https://fizmat-tech.euroasia-science.ru/files/site/slot88/ https://babacanpremium.com/ http://tckh.qbu.edu.vn/slot88/ https://ajpssi.org/public/journals/1/slot88/ https://rsujet.rsu.ac.th/asset/images/captcha/ https://econ-law.euroasia-science.ru/public/journals/1/slot88/ МЕХАНИЗМЫ СОПРОТИВЛЕНИЯ ОПУХОЛЕЙ БЛОКАДЕ ИММУННЫХ СВЕРОЧНЫХ ТОЧЕК (11-27) - Национальная Ассоциация Ученых
Национальная Ассоциация Ученых

Опубликовать статью в международном научном журнале. Бесплатная регистрация в РИНЦ, печатный номер журнала и сертификат участника научной публикации.

Generic selectors
Exact matches only
Искать в заголовках
Искать в контенте

МЕХАНИЗМЫ СОПРОТИВЛЕНИЯ ОПУХОЛЕЙ БЛОКАДЕ ИММУННЫХ СВЕРОЧНЫХ ТОЧЕК (11-27)

Номер части:
Оглавление
Содержание
Журнал
Выходные данные
Дата публикации статьи в журнале: 2020/02/04
Название журнала:Национальная Ассоциация Ученых, Выпуск: 51, Том: 2, Страницы в выпуске: 11-27
Автор: Вдовиченко Константин Константинович
к.б.н.,
Автор: Гарбуз Людмила Ильинична
к.б.н.,
Автор: Власов Вадим Вячеславович
к.б.н., ,
Анотация: «Блокада иммунных сверочных точек» (БИСТ) в лечении опухолей – это использование терапевтических антител, разрушающих отрицательные регуляторные иммунные каскады, и запускающих противоопухолевый иммунный ответ. Такие антитела были успешно апробированы в клинике, однако во многих случаях опухоли оказывались резистентными к блокаде. У клиницистов до сих пор мало инструментов, чтобы перед началом лечения определить: ответит или не ответит пациент на такую терапию. Новейшие научные исследования в онкологии могут дать ответ на этот вопрос. В обзоре описаны молекулярные механизмы резистентности и рассматриваются подходы по преодолению резистентности к блокаде в иммунных сверочных точках.
Ключевые слова: БИСТ (блокада иммунных сверочных точек); сигнальные каскады в опухолях; иммунотерапия; регуляторные каскады; адоптивный перенос ;
Данные для цитирования: Гарбуз Людмила Ильинична Власов Вадим Вячеславович. МЕХАНИЗМЫ СОПРОТИВЛЕНИЯ ОПУХОЛЕЙ БЛОКАДЕ ИММУННЫХ СВЕРОЧНЫХ ТОЧЕК (11-27). Национальная Ассоциация Ученых. Проблемы Медицинских наук. 2020/02/04; 51(2):11-27

  • PDF версия
  • Текстовая версия
Скачать в формате PDF

Список литературы: 1. Chowell D. et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy // Science -2018. -№ 359. – с. 582 2. Fessler J. et al. Exploring the emerging role of the microbiome in cancer immunotherapy // J. Immunother. Cancer -2019. -№ 7. – с. 108 3. Rizvi N. A. et al. Mutational landscape determines sensitivity to PD-1 blockade in non- small cell lung cancer // Science -2015. -№ 348. – с. 124 4. Snyder A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma // N. Engl. J. Med. -2014. -№ 371. – с. 2189 5. van Rooij N. et al. // Tumor exome analysis reveals neoantigen- specific T- cell reactivity in an ipilimumab-responsive melanoma. J. Clin. Oncol. - 2013. -№ 31. – с. e439 6. Tran E. et al. Cancer immunotherapy based on mutation- specific CD4+ T cells in a patient with epithelial cancer // Science -2014. -№ 344. – с. 641 7. Ott P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma // Nature -2017. -№ 547. – с. 217 8. Dighe A. S. et al. Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN gamma receptors // Immunity - 1994. №1, – с. 447 9. Kaplan D. H. et al. Demonstration of an interferon gamma- dependent tumor surveillance system in immunocompetent mice // Proc. Natl Acad. Sci. USA -1998. -№ 95. – с. 7556 10. Manguso R. T. et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target // Nature -2017. -№ 547. – с. 413 11. Patel S. J. et al. Identification of essential genes for cancer immunotherapy // Nature -2017. -№ 548. – с. 537 12. Pan D. et al. A major chromatin regulator determines resistance of tumor cells to T cell- mediated killing // Science -2018. -№ 359. – с. 770 13. Zaretsky J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma // N. Engl. J. Med. -2016. -№ 375. – с. 819 14. Gao J. et al. Loss of IFN- γ pathway genes in tumor cells as a mechanism of resistance to anti- CTLA-4 therapy // Cell -2016. -№ 167. – с. 397 15. Wilson E. B. et al. Blockade of chronic type I interferon signaling to control persistent LCMV infection // Science -2013. -№ 340. – с. 202 16. Benci J. L. et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade // Cell -2016. -№ 167. – с. 1540 17. Bach E. A. et al. The IFN gamma receptor: a paradigm for cytokine receptor signaling // Annu. Rev. Immunol. -1997. -№ 15. – с. 563 18. Sucker A. et al. Acquired IFNγ resistance impairs anti-tumor immunity and gives rise to T-cellresistant melanoma lesions // Nat. commun. -2017. -№ 8. – с. 15440 19. Shankaran V. et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity // Nature -2001. -№ 410. – с. 1107 20. Restifo N. P. et al. Identification of human cancers deficient in antigen processing // J. Exp. Med. -1993. -№ 177. – с. 265 21. Restifo N. P. et al. Loss of functional beta 2microglobulin in metastatic melanomas from five patients receiving immunotherapy // J. Natl. Cancer Inst. -1996. -№ 88. – с. 100 22. Sucker A. et al. Genetic evolution of T-cell resistance in the course of melanoma progression // Clin. Cancer Res. -2014. -№ 20. – с. 6593 23. McGranahan N. et al. Allele- specific HLA loss and immune escape in lung cancer evolution // Cell -2017. -№ 171. – с. 1259 24. Grasso C. S. et al. Genetic mechanisms of immune evasion in colorectal cancer // Cancer Discov. -2018. -№ 8. – с. 730 25. Huang L. et al. The RNA- binding protein MEX3B mediates resistance to cancer immunotherapy by downregulating HLA- A expression // Clin. Cancer Res. -2018. -№ 24. – с. 3366 26. Yaguchi T. et al. Immune suppression and resistance mediated by constitutive activation of Wnt/β-catenin signaling in human melanoma cells // J. Immunol. -2012. -№ 189. – с. 2110 27. Zhao F. et al. Paracrine Wnt5a- β-catenin signaling triggers a metabolic program that drives dendritic cell tolerization // Immunity -2018. -№ 48. – с. 147 28. Jimenez-Sanchez A. et al. Heterogeneous tumor-immune microenvironments among differentially growing metastases in an ovarian cancer patient // Cell -2017. -№ 170. – с. 927 29. Sridharan V. et al. Immune profiling of adenoid cystic carcinoma: PD- L2 expression and associations with tumor- infiltrating lymphocytes // Cancer Immunol. Res. -2016. -№ 4. – с. 679 30. Seiwert T. Y. et al. Integrative and comparative genomic analysis of HPV- positive and HPV- negative head and neck squamous cell carcinomas // Clin. Cancer Res. -2015. -№ 21. – с. 632 31. Sweis R. F. et al. Molecular drivers of the non-T-cell-inflamed tumor microenvironment in urothelial bladder cancer // Cancer Immunol. Res. - 2016. -№ 4. – с. 563 32. Abril- Rodriguez G. T. et al. PAK4 inhibition reverses immune cell exclusion and overcomes resistance to checkpoint blockade therapy [abstract O39, электронный ресурс]. – 2018. Режим доступа: URL: https://sitc.sitcancer.org/2018/abstracts/titles/?category =Mechanisms+of+Resistance+to+Immunotherapy 33. Hunter T. et al. Cyclins and cancer // Cell - 1991. -№ 66. – с. 1071 34. Deng J. et al. CDK4/6 inhibition augments antitumor immunity by enhancing T- cell activation // Cancer Discov. -2018. -№ 8. – с. 216 35. Jerby-Arnon L. et al. A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade // Cell -2018. -№ 175. – с. 984 36. Sumimoto H. et al. The BRAF- MAPK signaling pathway is essential for cancer- immune evasion in human melanoma cells // J. Exp. Med. - 2006. -№ 203. – с. 1651 37. Boni A. et al. Selective BRAFV600E inhibition enhances T- cell recognition of melanoma without affecting lymphocyte function // Cancer Res. 2010. -№ 70. – с. 5213 38. Frederick D. T. et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma // Clin. Cancer Res. -2013. -№ 19. – с. 1225 39. Acquavella N. et al. Type I cytokines synergize with oncogene inhibition to induce tumor growth arrest // Cancer Immunol. Res. -2015. -№ 3. – с. 37 40. Hugo W. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma // Cell -2016. -№ 165. – с. 35 41. Ebert P. J. R. et al. MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade // Immunity -2016. - № 44. – с. 609 42. Hu-Lieskovan S. et al. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAF(V600E) melanoma // Sci. Transl. Med. -2015. -№ 7. – с. 279ra41 43. Ribas A. et al. Combined BRAF and MEK inhibition with PD-1 blockade immunotherapy in BRAF-mutant melanoma // Nat. Med. -2019. -№ 25. – с. 936 44. Ascierto P. A. et al. Dabrafenib, trametinib and pembrolizumab or placebo in BRAF- mutant melanoma // Nat. Med. -2019. -№ 25. – с. 941 45. Sullivan R. J. et al. Atezolizumab plus cobimetinib and vemurafenib in BRAF- mutated melanoma patients // Nat. Med. -2019. -№ 25. – с. 929 46. Li J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer // Science -1997. -№ 275. – с. 1943 47. Peng W. et al. Loss of PTEN promotes resistance to T cell- mediated immunotherapy // Cancer Discov. -2016. -№ 6. – с. 202 48. George S. et al. Loss of PTEN is associated with resistance to anti- PD-1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma // Immunity -2017. -№ 46. – с. 197 49. Li S. et al. The tumor suppressor PTEN has a critical role in antiviral innate immunity // Nat. Immunol. -2016. -№ 17. – с. 241 50. Kaneda M. M. et al. PI3Kgamma is a molecular switch that controls immune suppression // Nature -2016. -№ 539. – с. 437 51. Mehta A. et al. Immunotherapy resistance by inflammation- induced dedifferentiation // Cancer Discov. -2018. -№ 8. – с. 935 52. Miao Y. et al. Adaptive immune resistance emerges from tumor- initiating stem cells // Cell -2019. -№ 177. – с. 1172 53. Castagnoli L. et al. WNT signaling modulates PD- L1 expression in the stem cell compartment of triplenegative breast cancer // Oncogene -2019. -№ 38. – с. 4047 54. Paczulla A. M. et al. Absence of NKG2D ligands defines leukaemia stem cells and mediates their immune evasion // Nature -2019. -№ 572. – с. 254 55. Zhan T. et al. Wnt signaling in cancer // Oncogene -2017. -№ 36. – с. 1461 56. Menshawy A. et al. Nivolumab monotherapy or in combination with ipilimumab for metastatic melanoma: systematic review and meta- analysis of randomized- controlled trials // Melanoma Res. -2018. -№ 28. – с. 371 57. Dudley M. E. et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes // Science -2002. -№ 298. – с. 850 58. Zeng D. Q. et al. Prognostic and predictive value of tumor- infiltrating lymphocytes for clinical therapeutic research in patients with non-small cell lung cancer // Oncotarget -2016. -№ 7. – с. 13765 59. Galon J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome // Science -2006. -№ 313. – с. 1960 60. Tumeh P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance // Nature -2014. -№ 515. – с. 568 61. Le D. T. et al. PD-1 blockade in tumors with mismatch repair deficiency // N. Engl. J. Med. -2015. - № 372. – с. 2509 62. Mariathasan S. et al. TGFβ attenuates tumour response to PD- L1 blockade by contributing to exclusion of T cells // Nature -2018. -№ 554. – с. 544 63. Riaz N. et al. Tumor and microenvironment evolution during immunotherapy with nivolumab // Cell -2017. -№ 171. – с. 934 64. Yost K. E. et al. Clonal replacement of tumor- specific T cells following PD-1 blockade // Nat. Med. -2019. -№ 25. – с. 1251 65. Topalian S. L. et al. Safety, activity, and immune correlates of anti- PD-1 antibody in cancer // N. Engl. J. Med. -2012. -№ 366. – с. 2443 66. Garon E. B. et al. Pembrolizumab for the treatment of non-small-cell lung cancer // N. Engl. J. Med. -2015. -№ 372. – с. 2018 67. Wolchok J. D. et al. Nivolumab plus ipilimumab in advanced melanoma // N. Engl. J. Med. -2013. -№ 369. – с. 122 68. Robert C. et al. Nivolumab in previously untreated melanoma without BRAF mutation // N. Engl. J. Med. -2015. -№ 372. – с. 320 69. Forde P. M. et al. Neoadjuvant PD-1 blockade in resectable lung cancer // N. Engl. J. Med. - 2018. -№ 378. – с. 1976 70. Chen G. et al. Exosomal PD- L1 contributes to immunosuppression and is associated with anti- PD- 1 response // Nature -2018. -№ 560. – с. 382 71. Ribas A. et al. What does PD- L1 positive or negative mean? // J. Exp. Med. -2016. -№ 213. – с. 2835 72. Newman A. M. et al. Robust enumeration of cell subsets from tissue expression profiles // Nat. Methods -2015. -№ 12. – с. 453 73. Becht E. et al. Estimating the population abundance of tissue- infiltrating immune and stromal cell populations using gene expression // Genome Biol. -2016. -№ 17. – с. 218 74. Rooney M. S. et al. Molecular and genetic properties of tumors associated with local immune cytolytic activity // Cell -2015. -№ 160. – с. 48 75. Sade-Feldman M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma // Cell -2018. -№ 175. – с. 998 76. Nishino M. et al. Monitoring immune- checkpoint blockade: response evaluation and biomarker development // Nat. Rev. Clin. Oncol. -2017. -№ 14. – с. 655 77. McGranahan N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade // Science -2016. -№ 351. – с. 1463 78. Vitiello A. et al. Neoantigen prediction and the need for validation // Nat. Biotechnol. -2017. -№ 35. – с. 815 79. Wei S. C. et al. Fundamental mechanisms of immune checkpoint blockade therapy // Cancer Discov. -2018. -№ 8. – с. 1069 80. Gardner A. et al. Dendritic cells and cancer immunity // Trends Immunol. -2016. -№ 37. – с. 855 81. Redelman-Sidi G. et al. The mechanism of action of BCG therapy for bladder cancer – a current perspective // Nat. Rev. Urol. -2014. -№ 11. – с. 153 82. Weichselbaum R. R. et al. Radiotherapy and immunotherapy: a beneficial liaison? // Nat. Rev. Clin. Oncol. -2017. -№ 14. – с. 365 83. Kroemer G. et al. Immunogenic cell death in cancer therapy // Annu. Rev. Immunol. -2013. -№ 31. – с. 51 84. Apetoh L. et al. Toll- like receptor 4dependent contribution of the immune system to anticancer chemotherapy and radiotherapy // Nat. Med. -2007. -№ 13. – с. 1050 85. Twyman-Saint Victor C. et al. Radiation and dual checkpoint blockade activate non- redundant immune mechanisms in cancer // Nature -2015. -№ 520. – с. 373 86. Seifert L. et al. Radiation therapy induces macrophages to suppress T- cell responses against pancreatic tumors in mice // Gastroenterology -2016. - № 150. – с. 1659 87. Patel S. A. et al. Combination cancer therapy with immune checkpoint blockade: mechanisms and strategies // Immunity -2018. -№ 48. – с. 417 88. Goldsmith K. et al. Infected cell protein (ICP)47 enhances herpes simplex virus neurovirulence by blocking the CD8+ T cell response // J. Exp. Med. 1998. -№ 187. – с. 341 89. Ribas A. et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy // Cell -2018. -№ 174. – с. 1031 90. Ribas A. et al. SD-101 in combination with pembrolizumab in advanced melanoma: results of a phase Ib, multicenter study // Cancer Discov. -2018. - № 8. – с. 1250 91. Guiducci C. et al. Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection // Cancer Res. -2005. -№ 65. – с. 3437 92. Vicari A. P. et al. Reversal of tumor- induced dendritic cell paralysis by CpG immunostimulatory oligonucleotide and anti-interleukin 10 receptor antibody // J. Exp. Med. -2002. -№ 196. – с. 541 93. Sagiv-Barfi I. et al. Eradication of spontaneous malignancy by local immunotherapy // Sci. Transl. Med. -2018. -№ 10. – с. eaan4488 94. Ishizuka J. J. et al. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade // Nature -2018. -№ 565. – с. 43 95. Wang H. et al. cGAS is essential for the antitumor effect of immune checkpoint blockade // Proc. Natl Acad. Sci. USA -2017. -№ 114. – с. 1637 96. Morrison A. H. et al. Immunotherapy and prevention of pancreatic cancer // Trends cancer -2018. -№ 4. – с. 418 97. Byrne K. T. et al. CD40 stimulation obviates innate sensors and drives T cell immunity in cancer // Cell Rep. -2016. -№ 15. – с. 2719 98. Ma D. Y. et al. The role of CD40 and CD154/CD40L in dendritic cells // Semin. Immunol. - 2009. -№ 21. – с. 265 99. Roybal K. T. et al. Synthetic immunology: hacking immune cells to expand their therapeutic capabilities // Annu. Rev. Immunol. -2017. -№ 35. – с. 229 100. Ljunggren H. G. et al. In search of the «missing self»: MHC molecules and NK cell recognition // Immunol. Today -1990. -№ 11. – с. 237 101. Andre P. et al. Anti- NKG2A mAb is a checkpoint inhibitor that promotes anti- tumor immunity by unleashing both T and NK cells // Cell - 2018. -№ 175. – с. 1731

Fatal error: Uncaught Error: Class 'Smalot\PdfParser\Parser' not found in /var/www/u1695795/data/www/national-science.ru/wp-content/themes/gucherry-blog/template-parts/content-single.php:408 Stack trace: #0 /var/www/u1695795/data/www/national-science.ru/wp-includes/template.php(772): require() #1 /var/www/u1695795/data/www/national-science.ru/wp-includes/template.php(716): load_template('/var/www/u16957...', false, Array) #2 /var/www/u1695795/data/www/national-science.ru/wp-includes/general-template.php(204): locate_template(Array, true, false, Array) #3 /var/www/u1695795/data/www/national-science.ru/wp-content/themes/gucherry-blog/single.php(35): get_template_part('template-parts/...', 'single') #4 /var/www/u1695795/data/www/national-science.ru/wp-includes/template-loader.php(106): include('/var/www/u16957...') #5 /var/www/u1695795/data/www/national-science.ru/wp-blog-header.php(21): require_once('/var/www/u16957...') #6 /var/www/u1695795/data/www/national-science.ru/index.php(17): require('/var/www/u16957...') #7 {main} in /var/www/u1695795/data/www/national-science.ru/wp-content/themes/gucherry-blog/template-parts/content-single.php on line 408