МЕХАНИЗМЫ СОПРОТИВЛЕНИЯ ОПУХОЛЕЙ БЛОКАДЕ ИММУННЫХ СВЕРОЧНЫХ ТОЧЕК (11-27)
Номер части:
Оглавление
Содержание
Журнал
Выходные данные
Дата публикации статьи в журнале:
2020/02/04
Название журнала:Национальная Ассоциация Ученых,
Выпуск:
51,
Том: 2,
Страницы в выпуске:
11-27
Автор:
Вдовиченко Константин Константинович
к.б.н.,
к.б.н.,
Автор:
Гарбуз Людмила Ильинична
к.б.н.,
к.б.н.,
Автор:
Власов Вадим Вячеславович
к.б.н., ,
к.б.н., ,
Анотация: «Блокада иммунных сверочных точек» (БИСТ) в лечении опухолей – это использование терапевтических антител, разрушающих отрицательные регуляторные иммунные каскады, и запускающих противоопухолевый иммунный ответ. Такие антитела были успешно апробированы в клинике, однако во многих случаях опухоли оказывались резистентными к блокаде. У клиницистов до сих пор мало инструментов, чтобы перед началом лечения определить: ответит или не ответит пациент на такую терапию. Новейшие научные исследования в онкологии могут дать ответ на этот вопрос. В обзоре описаны молекулярные механизмы резистентности и рассматриваются подходы по преодолению резистентности к блокаде в иммунных сверочных точках.
Ключевые слова:
БИСТ (блокада иммунных сверочных точек);
сигнальные каскады в опухолях; иммунотерапия; регуляторные каскады; адоптивный перенос ;
Данные для цитирования: Гарбуз Людмила Ильинична Власов Вадим Вячеславович. МЕХАНИЗМЫ СОПРОТИВЛЕНИЯ ОПУХОЛЕЙ БЛОКАДЕ ИММУННЫХ СВЕРОЧНЫХ ТОЧЕК (11-27). Национальная Ассоциация Ученых.
Проблемы Медицинских наук. 2020/02/04;
51(2):11-27
Скачать в формате PDF
Список литературы: 1. Chowell D. et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy // Science -2018. -№ 359. – с.
582
2. Fessler J. et al. Exploring the emerging role of the microbiome in cancer immunotherapy // J. Immunother. Cancer -2019. -№ 7. – с. 108
3. Rizvi N. A. et al. Mutational landscape determines sensitivity to PD-1 blockade in non- small cell lung cancer // Science -2015. -№ 348. – с. 124
4. Snyder A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma // N. Engl. J. Med. -2014. -№ 371. – с. 2189
5. van Rooij N. et al. // Tumor exome analysis reveals neoantigen- specific T- cell reactivity in an ipilimumab-responsive melanoma. J. Clin. Oncol. -
2013. -№ 31. – с. e439
6. Tran E. et al. Cancer immunotherapy based on mutation- specific CD4+ T cells in a patient with epithelial cancer // Science -2014. -№ 344. – с. 641
7. Ott P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma // Nature -2017. -№ 547. – с. 217
8. Dighe A. S. et al. Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN gamma receptors // Immunity -
1994. №1, – с. 447
9. Kaplan D. H. et al. Demonstration of an interferon gamma- dependent tumor surveillance system in immunocompetent mice // Proc. Natl Acad. Sci. USA -1998. -№ 95. – с. 7556
10. Manguso R. T. et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target // Nature -2017. -№ 547. – с. 413
11. Patel S. J. et al. Identification of essential genes for cancer immunotherapy // Nature -2017. -№ 548. – с. 537
12. Pan D. et al. A major chromatin regulator determines resistance of tumor cells to T cell- mediated killing // Science -2018. -№ 359. – с. 770
13. Zaretsky J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma // N. Engl. J. Med. -2016. -№ 375. – с. 819
14. Gao J. et al. Loss of IFN- γ pathway genes in tumor cells as a mechanism of resistance to anti- CTLA-4 therapy // Cell -2016. -№ 167. – с. 397
15. Wilson E. B. et al. Blockade of chronic type I interferon signaling to control persistent LCMV infection // Science -2013. -№ 340. – с. 202
16. Benci J. L. et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade // Cell -2016. -№ 167. – с. 1540
17. Bach E. A. et al. The IFN gamma receptor: a paradigm for cytokine receptor signaling // Annu. Rev. Immunol. -1997. -№ 15. – с. 563
18. Sucker A. et al. Acquired IFNγ resistance impairs anti-tumor immunity and gives rise to T-cellresistant melanoma lesions // Nat. commun. -2017. -№ 8. – с. 15440
19. Shankaran V. et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity // Nature -2001. -№ 410. – с. 1107
20. Restifo N. P. et al. Identification of human cancers deficient in antigen processing // J. Exp. Med.
-1993. -№ 177. – с. 265
21. Restifo N. P. et al. Loss of functional beta 2microglobulin in metastatic melanomas from five patients receiving immunotherapy // J. Natl. Cancer Inst. -1996. -№ 88. – с. 100
22. Sucker A. et al. Genetic evolution of T-cell resistance in the course of melanoma progression // Clin. Cancer Res. -2014. -№ 20. – с. 6593
23. McGranahan N. et al. Allele- specific HLA loss and immune escape in lung cancer evolution // Cell -2017. -№ 171. – с. 1259
24. Grasso C. S. et al. Genetic mechanisms of immune evasion in colorectal cancer // Cancer Discov. -2018. -№ 8. – с. 730
25. Huang L. et al. The RNA- binding protein MEX3B mediates resistance to cancer immunotherapy by downregulating HLA- A expression // Clin. Cancer Res. -2018. -№ 24. – с. 3366
26. Yaguchi T. et al. Immune suppression and resistance mediated by constitutive activation of Wnt/β-catenin signaling in human melanoma cells // J. Immunol. -2012. -№ 189. – с. 2110
27. Zhao F. et al. Paracrine Wnt5a- β-catenin signaling triggers a metabolic program that drives dendritic cell tolerization // Immunity -2018. -№ 48. – с. 147
28. Jimenez-Sanchez A. et al. Heterogeneous tumor-immune microenvironments among differentially growing metastases in an ovarian cancer patient // Cell -2017. -№ 170. – с. 927
29. Sridharan V. et al. Immune profiling of adenoid cystic carcinoma: PD- L2 expression and associations with tumor- infiltrating lymphocytes // Cancer Immunol. Res. -2016. -№ 4. – с. 679
30. Seiwert T. Y. et al. Integrative and comparative genomic analysis of HPV- positive and HPV- negative head and neck squamous cell
carcinomas // Clin. Cancer Res. -2015. -№ 21. – с. 632
31. Sweis R. F. et al. Molecular drivers of the non-T-cell-inflamed tumor microenvironment in urothelial bladder cancer // Cancer Immunol. Res. -
2016. -№ 4. – с. 563
32. Abril- Rodriguez G. T. et al. PAK4 inhibition reverses immune cell exclusion and overcomes resistance to checkpoint blockade therapy [abstract O39, электронный ресурс]. – 2018. Режим доступа: URL:
https://sitc.sitcancer.org/2018/abstracts/titles/?category
=Mechanisms+of+Resistance+to+Immunotherapy
33. Hunter T. et al. Cyclins and cancer // Cell -
1991. -№ 66. – с. 1071
34. Deng J. et al. CDK4/6 inhibition augments antitumor immunity by enhancing T- cell activation // Cancer Discov. -2018. -№ 8. – с. 216
35. Jerby-Arnon L. et al. A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade // Cell -2018. -№ 175. – с. 984
36. Sumimoto H. et al. The BRAF- MAPK signaling pathway is essential for cancer- immune evasion in human melanoma cells // J. Exp. Med. -
2006. -№ 203. – с. 1651
37. Boni A. et al. Selective BRAFV600E inhibition enhances T- cell recognition of melanoma without affecting lymphocyte function // Cancer Res. 2010. -№ 70. – с. 5213
38. Frederick D. T. et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma // Clin. Cancer Res. -2013. -№ 19. – с. 1225
39. Acquavella N. et al. Type I cytokines synergize with oncogene inhibition to induce tumor growth arrest // Cancer Immunol. Res. -2015. -№ 3. – с. 37
40. Hugo W. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma // Cell -2016. -№ 165. – с. 35
41. Ebert P. J. R. et al. MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade // Immunity -2016. -
№ 44. – с. 609
42. Hu-Lieskovan S. et al. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAF(V600E) melanoma // Sci. Transl. Med. -2015. -№ 7. – с. 279ra41
43. Ribas A. et al. Combined BRAF and MEK inhibition with PD-1 blockade immunotherapy in BRAF-mutant melanoma // Nat. Med. -2019. -№ 25. – с. 936
44. Ascierto P. A. et al. Dabrafenib, trametinib and pembrolizumab or placebo in BRAF- mutant melanoma // Nat. Med. -2019. -№ 25. – с. 941
45. Sullivan R. J. et al. Atezolizumab plus cobimetinib and vemurafenib in BRAF- mutated melanoma patients // Nat. Med. -2019. -№ 25. – с. 929
46. Li J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer // Science -1997. -№ 275. – с. 1943
47. Peng W. et al. Loss of PTEN promotes resistance to T cell- mediated immunotherapy // Cancer Discov. -2016. -№ 6. – с. 202
48. George S. et al. Loss of PTEN is associated with resistance to anti- PD-1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma // Immunity -2017. -№ 46. – с. 197
49. Li S. et al. The tumor suppressor PTEN has a critical role in antiviral innate immunity // Nat. Immunol. -2016. -№ 17. – с. 241
50. Kaneda M. M. et al. PI3Kgamma is a molecular switch that controls immune suppression // Nature -2016. -№ 539. – с. 437
51. Mehta A. et al. Immunotherapy resistance by inflammation- induced dedifferentiation // Cancer Discov. -2018. -№ 8. – с. 935
52. Miao Y. et al. Adaptive immune resistance emerges from tumor- initiating stem cells // Cell -2019. -№ 177. – с. 1172
53. Castagnoli L. et al. WNT signaling modulates PD- L1 expression in the stem cell compartment of triplenegative breast cancer // Oncogene -2019. -№ 38. – с. 4047
54. Paczulla A. M. et al. Absence of NKG2D ligands defines leukaemia stem cells and mediates their immune evasion // Nature -2019. -№ 572. – с. 254
55. Zhan T. et al. Wnt signaling in cancer // Oncogene -2017. -№ 36. – с. 1461
56. Menshawy A. et al. Nivolumab monotherapy or in combination with ipilimumab for metastatic melanoma: systematic review and meta- analysis of randomized- controlled trials // Melanoma Res. -2018. -№ 28. – с. 371
57. Dudley M. E. et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes // Science -2002. -№ 298. – с. 850
58. Zeng D. Q. et al. Prognostic and predictive value of tumor- infiltrating lymphocytes for clinical therapeutic research in patients with non-small cell lung cancer // Oncotarget -2016. -№ 7. – с. 13765
59. Galon J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome // Science -2006. -№ 313. – с. 1960
60. Tumeh P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance // Nature -2014. -№ 515. – с. 568
61. Le D. T. et al. PD-1 blockade in tumors with mismatch repair deficiency // N. Engl. J. Med. -2015. -
№ 372. – с. 2509
62. Mariathasan S. et al. TGFβ attenuates tumour response to PD- L1 blockade by contributing to exclusion of T cells // Nature -2018. -№ 554. – с. 544
63. Riaz N. et al. Tumor and microenvironment evolution during immunotherapy with nivolumab // Cell -2017. -№ 171. – с. 934
64. Yost K. E. et al. Clonal replacement of tumor- specific T cells following PD-1 blockade // Nat. Med. -2019. -№ 25. – с. 1251
65. Topalian S. L. et al. Safety, activity, and immune correlates of anti- PD-1 antibody in cancer // N. Engl. J. Med. -2012. -№ 366. – с. 2443
66. Garon E. B. et al. Pembrolizumab for the treatment of non-small-cell lung cancer // N. Engl. J. Med. -2015. -№ 372. – с. 2018
67. Wolchok J. D. et al. Nivolumab plus ipilimumab in advanced melanoma // N. Engl. J. Med. -2013. -№ 369. – с. 122
68. Robert C. et al. Nivolumab in previously untreated melanoma without BRAF mutation // N. Engl. J. Med. -2015. -№ 372. – с. 320
69. Forde P. M. et al. Neoadjuvant PD-1
blockade in resectable lung cancer // N. Engl. J. Med. -
2018. -№ 378. – с. 1976
70. Chen G. et al. Exosomal PD- L1 contributes to immunosuppression and is associated with anti- PD-
1 response // Nature -2018. -№ 560. – с. 382
71. Ribas A. et al. What does PD- L1 positive or negative mean? // J. Exp. Med. -2016. -№ 213. – с. 2835
72. Newman A. M. et al. Robust enumeration of cell subsets from tissue expression profiles // Nat. Methods -2015. -№ 12. – с. 453
73. Becht E. et al. Estimating the population abundance of tissue- infiltrating immune and stromal cell populations using gene expression // Genome Biol. -2016. -№ 17. – с. 218
74. Rooney M. S. et al. Molecular and genetic properties of tumors associated with local immune cytolytic activity // Cell -2015. -№ 160. – с. 48
75. Sade-Feldman M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma // Cell -2018. -№ 175. – с.
998
76. Nishino M. et al. Monitoring immune- checkpoint blockade: response evaluation and biomarker development // Nat. Rev. Clin. Oncol. -2017. -№ 14. – с. 655
77. McGranahan N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade // Science -2016. -№ 351. – с. 1463
78. Vitiello A. et al. Neoantigen prediction and the need for validation // Nat. Biotechnol. -2017. -№ 35. – с. 815
79. Wei S. C. et al. Fundamental mechanisms of immune checkpoint blockade therapy // Cancer Discov. -2018. -№ 8. – с. 1069
80. Gardner A. et al. Dendritic cells and cancer immunity // Trends Immunol. -2016. -№ 37. – с. 855
81. Redelman-Sidi G. et al. The mechanism of action of BCG therapy for bladder cancer – a current perspective // Nat. Rev. Urol. -2014. -№ 11. – с. 153
82. Weichselbaum R. R. et al. Radiotherapy and immunotherapy: a beneficial liaison? // Nat. Rev. Clin.
Oncol. -2017. -№ 14. – с. 365
83. Kroemer G. et al. Immunogenic cell death in cancer therapy // Annu. Rev. Immunol. -2013. -№ 31. – с. 51
84. Apetoh L. et al. Toll- like receptor 4dependent contribution of the immune system to anticancer chemotherapy and radiotherapy // Nat. Med. -2007. -№ 13. – с. 1050
85. Twyman-Saint Victor C. et al. Radiation and dual checkpoint blockade activate non- redundant immune mechanisms in cancer // Nature -2015. -№ 520. – с. 373
86. Seifert L. et al. Radiation therapy induces macrophages to suppress T- cell responses against pancreatic tumors in mice // Gastroenterology -2016. -
№ 150. – с. 1659
87. Patel S. A. et al. Combination cancer therapy with immune checkpoint blockade: mechanisms and strategies // Immunity -2018. -№ 48. – с. 417
88. Goldsmith K. et al. Infected cell protein (ICP)47 enhances herpes simplex virus neurovirulence by blocking the CD8+ T cell response // J. Exp. Med. 1998. -№ 187. – с. 341
89. Ribas A. et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy // Cell -2018. -№ 174. – с. 1031
90. Ribas A. et al. SD-101 in combination with pembrolizumab in advanced melanoma: results of a phase Ib, multicenter study // Cancer Discov. -2018. -
№ 8. – с. 1250
91. Guiducci C. et al. Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection // Cancer Res. -2005. -№ 65. – с. 3437
92. Vicari A. P. et al. Reversal of tumor- induced dendritic cell paralysis by CpG immunostimulatory oligonucleotide and anti-interleukin 10 receptor antibody // J. Exp. Med. -2002. -№ 196. – с. 541
93. Sagiv-Barfi I. et al. Eradication of spontaneous malignancy by local immunotherapy // Sci. Transl. Med. -2018. -№ 10. – с. eaan4488
94. Ishizuka J. J. et al. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade // Nature -2018. -№ 565. – с. 43
95. Wang H. et al. cGAS is essential for the antitumor effect of immune checkpoint blockade // Proc. Natl Acad. Sci. USA -2017. -№ 114. – с. 1637
96. Morrison A. H. et al. Immunotherapy and prevention of pancreatic cancer // Trends cancer -2018. -№ 4. – с. 418
97. Byrne K. T. et al. CD40 stimulation obviates innate sensors and drives T cell immunity in cancer // Cell Rep. -2016. -№ 15. – с. 2719
98. Ma D. Y. et al. The role of CD40 and
CD154/CD40L in dendritic cells // Semin. Immunol. -
2009. -№ 21. – с. 265
99. Roybal K. T. et al. Synthetic immunology: hacking immune cells to expand their therapeutic capabilities // Annu. Rev. Immunol. -2017. -№ 35. – с. 229
100. Ljunggren H. G. et al. In search of the «missing self»: MHC molecules and NK cell
recognition // Immunol. Today -1990. -№ 11. – с. 237
101. Andre P. et al. Anti- NKG2A mAb is a checkpoint inhibitor that promotes anti- tumor immunity by unleashing both T and NK cells // Cell -
2018. -№ 175. – с. 1731