ЛАБОРАТОРНАЯ УСТАНОВКА ДЛЯ ОПРЕДЕЛЕНИЯ ГИДРАВЛИЧЕСКИХ ХАРАКТЕРИСТИК РЕГУЛИРУЮЩЕГО УСТРОЙСТВА, ЗАКРУЧИВАЮЩЕГО ПОТОК

Ездина Анна Анатольевна

ФГБОУ ВО «Курганская государственная сельскохозяйственная академия имени Т.С. Мальцева» село Лесниково, Россия

Бойко Дарья Алексеевна

ФГБОУ ВО «Курганская государственная сельскохозяйственная академия имени Т.С. Мальцева»

село Лесниково, Россия

Пономарева Ольга Анатольевна

кандидат тех. наук

ФГБОУ ВО «Курганская государственная сельскохозяйственная академия имени Т.С. Мальцева» село Лесниково. Россия

Новикова Валентина Александровна

кандидат тех. наук, доцент ФГБОУ ВО «Курганская государственная сельскохозяйственная академия имени Т.С. Мальцева» село Лесниково, Россия

LABORATORY INSTALLATION FOR DETERMINATION OF HYDRAULIC CHARACTERISTICS OF REGULATORY DEVICE

Ezdina Ann

FSBEI of HE "Kurgan State Agricultural Academy by T.S. Maltsev" Lesnikovo village, Russia

Boyko Darya

FSBEI of HE "Kurgan State Agricultural Academy by T.S. Maltsev" Lesnikovo village, Russia

Ponomareva Olga

candidate of technical sciences FSBEI of HE "Kurgan State Agricultural Academy by T.S. Maltsev" Lesnikovo village, Russia

Novikova Valentina

candidate of technical sciences, docent FSBEI of HE "Kurgan State Agricultural Academy by T.S. Maltsev" Lesnikovo village, Russia

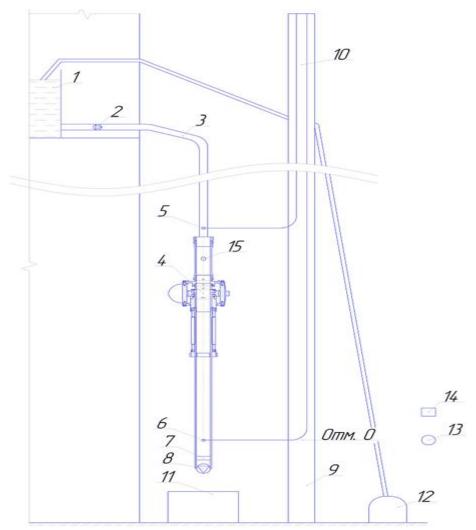
Аннотация

Увеличение коэффициента сопротивления в регулирующем устройстве и минимальное сопротивление в открытом положении, уменьшение коэффициента сопротивления в трубах является актуальной задачей. Нами создана лабораторная установка регулирующего устройства с закручиванием потока проводимой среды для определения гидравлических характеристик.

Abstract

An increase in the resistance coefficient in the regulating device and a minimum resistance in the open position, a decrease in the resistance coefficient in the pipes is an urgent task. We have created a laboratory installation of a regulating device with a twisting flow of the medium to determine the hydraulic characteristics.

Ключевые слова: лабораторная установка; регулирующее устройство; проводимая среда; опыты; закручивание: сопротивление.


Keywords: laboratory installation; regulating device; conducted medium; experiments; twisting; resistance.

В сельском хозяйстве важную роль играют процессов: водоснабжение [4], приготовление и системы гидромеханизации сельскохозяйственных раздача жидких кормов, удаления жидкого навоза [5]. Увеличение коэффициента сопротивления в регулирующем устройстве и минимальное сопротивление в открытом положении, уменьшение коэффициента сопротивления в трубах является актуальной задачей.

Нами создана лабораторная установка шлангового регулирующего устройства с закручиванием потока проводимой среды для определения гидравлических характеристик [1].

Схема лабораторной установки для исследования шлангового устройства с закручиванием потока проводимой среды, рисунок 1, состоит из бака 1 расположенного на высоте 3,25 метра, ёмкостью 2 кубических метра, площадью 5 квадратных метра. Из бака 1 через кран 2 и трубу 3 к испытуемому регулирующему устройству 4 течет вода [6,7,15]. Регулирующими элементами регулирующего устройства 4 являются стержни

[2,16,17]. На расстоянии 0,45 метра до начала стержней регулирующего устройства встроен пьезометр 5 и на расстоянии 0,5 метра от конца стержней встроен пьезометр 6, участки трубы до регулирующего устройства и после прозрачные. После пьезометра 6 на расстоянии 0,15 метра установлен расходометр 7, за ним расположен кран 8 [13,14]. Пьезометры прикреплены к рейке 9, длиною 4 метра, с расположенным на ней метром 10, «0» метром на рейке выставлен на уровне пьезометра 6. По мере наполнения бака 11 вода перекачивается в бак 1 насосом 12. Время 13, фиксируется секундомером процесс регистрируется на видеокамеру и фотокамеру 14. Для визуализации движения воды перед регулирующим устройством внутри закреплена красная шёлковая нить 15 и в трубу вводятся нарезанные лепестки цветов.

1- бак; 2- кран; 3- труба; 4- опытный образец регулирующего устройства; 5- пьезометр первый; 6- пьезометр второй; 7- счетчик; 8- кран; 9- рейка; 10- метр; 11- бак; 12- насос; 13- секундомер; 14- видеокамера, фотокамера; 15- закрепленная шелковая нить. Рисунок 1 — Схема лабораторной установки для исследования шлангового устройства с закручиванием потока проводимой среды

При закрытом кране 8 открываем кран 2 и заполняем систему водой [8-10], регулирующее устройство 4 закрываем до соприкосновения стержней между собой [3], стержни являются

регулирующими элементами. Краном 8 устанавливаем необходимый расход воды, с помощью счетчика 7 и секундомера 13 измеряем расход воды, при этом считываем показания

пьезометра 5 и пьезометра 6, когда они устанавливаются. Краном 8 изменяем расход не менее чем на 15 % и опыт повторяем при новом значении расхода [11]. Независимые факторы: расход; положение регулирующих элементов - его положение оцениваем углом поворота втулки. При каждом положении регулирующих элементов опыты проводятся не менее чем при трех значениях расхода [12], минимум 3 уровня.

Снимаем на видеокамеру и фотокамеру 14 процесс течения воды. В дальнейшем разложим видео по кадрам и наблюдая за пузырьками в, образованных шлангом и стержнями, каналах подтвердим предположения, что поток закручивается вначале в периферийных каналах, те в свое время закручивают основной поток в центральной части, рисунок 2

Рисунок 2 – Закручивание потока в периферийном канале, образованным шлангов и стержнями

Зона схлопывания кавитационных пузырьков перемещается от стенок к центру потока. Так реализуется управление расположением зоны схлопывания кавитационных пузырьков, предотвращение кавитационного износа шланга и повышение надёжности регулирующего устройства.

Регулирующее устройство полностью закрыто при повороте втулки на 180° , сопротивление практически менее 1 мм водного столба при повороте втулки от положения полностью закрытого на 21° .

В полностью открытом положении, когда регулирующие элементы параллельны оси устройства, регулирующее устройство является полнопроходным и имеет минимальный коэффициент сопротивления.

В дальнейшем будем определять число Рейнольдса.

На основании результата расчета определим коэффициент сопротивления от положения регулирующих элементов. Определим скорость движения вдоль шланга и по окружности.

Список литературы

- 1. Ездина А.А., Пономарева О.А., Фоминых А.В. / Регулирующее устройство с использованием скручивания потока проводимой среды. В сборнике: Научное обеспечение реализации государственных программ АПК и сельских территорий. 2017. С. 393 396.
- 2. Котельников Л. В., Фоминых А. В. Штуцерное дроссельно-регулирующее устройство/ В сборнике: Техническое обеспечение технологий производства сельскохозяйственной продукции. Материалы І Всероссийской научно-практической конференции. 2017. С. 10—13.
- 3. Логинов Д. В., Фоминых А. В. Обзор методов упрочнения трущихся поверхностей / В сборнике: Техническое обеспечение технологий производства сельскохозяйственной продукции. Материалы I Всероссийской научно-практической конференции. 2017.-C.36-41.
- 4. Фоминых А. В. Регулирование расхода на водозаборе в системе первого подъèма воды / А.В. Фоминых, И.Р. Чиняев, Е.А. Пошивалов, С.А. Сухов // Вестник ЧГАА. Т. 70. г. Челябинск. 2014. C.136-140.
- 5. Фоминых А.В. Гидравлическая система удаления навоза из животноводческого помещения

- / А.В. Фоминых, И.Р. Чиняев, Д.Н. Овчинников // Главный зоотехник. 2013. № 6. С. 57 60.
- 6. Фоминых А.В. Определение гидравлических характеристик запорнорегулирующих задвижек / А.В. Фоминых, Д.Н. Овчинников, И.Р. Чиняев // Аграрный вестник Урала. 2012. № 2. С. 27 30.
- 7. Фоминых А.В. Трубопроводная арматура как основа систем пассивной защиты / И.Р. Чиняев, А.Л. Шанаурин, Е.А. Ильиных // Арматуростроение. 2016. № 4. С. 58-63.
- 8. Фоминых А.В. Определение гидравлических и кавитационных характеристик клеточного клапана / А.В. Фоминых, И.Р. Чиняев, Е.А. Пошивалов, Е.А. Ильиных // Вестник Курганской ГСХА. 2016. № 1. С. 71 75.
- 9. Фоминых А.В. Кавитация в шиберных задвижках / И.Р. Чиняев, А.В. Фоминых, В.С. Ерошкин // Территория «Нефтегаз. 2013. № 5. С. 48. 49.
- 10. Фоминых А.В. Анализ методик экспериментального определения кавитационных характеристик трубопроводной арматуры / Е.А. Пошивалов, И.Р. Чиняев, А.Л. Шанаурин // Трубопроводная арматура. 2016. № 4. С. 42–45.
- 11. Фоминых А.В. Опыт использования ГОСТ Р 55508-2013 при определении гидравлических и кавитационных характеристик запорнорегулирующего клапана клеточного / И.Р. Чиняев,

- Е.А. Пошивалов, Е.А. Ильиных // Территория нефтегаз. 2016. \mathbb{N}_2 7, 8. С. 96 100.
- 12. Фоминых А.В. Гидравлические и кавитационные характеристики регулирующих клапанов в диапазоне давлений до 3,0 МПа / Л.В. Котельников, Е.А. Пошивалов, И.Р. Чиняев, А.Л. Шанаурин, А.В. Фоминых //Трубопроводная арматура. 2017. № 2. С. 54 55.
- 13. Чиняев И.Р., Фоминых А.В., Сухов С.А. Повышение надѐжности и эффективности работы шиберной запорно-регулирующей задвижки / И.Р. Чиняев, А.В. Фоминых С.А. Сухов // Экспозиция нефть газ. 2013. № 3. С. 80 82.
- 14. Чиняев И.Р., Фоминых А.В., Пошивалов Е.А., Сухов С.А. Определение пропускной характеристики задвижки шиберной запорнорегулирующей / И.Р. Чиняев, А.В. Фоминых, Е.А. Пошивалов, С.А. Сухов // Экспозиция нефть газ. 2015. \mathbb{N} 2. С. 38 40.
- 15. Fominykh A.V., Chinyaev I.R., Ilinykh E.A. The valve is a shutoff for the passive protection systems of pipelines // Procedia Engineering 150. 2016. C. 220–224.
- 16. Fominykh A.V. The Method of Determining the Cavitation Characteristics of Valves / I.R. Chinyaev, E.A. Pochivalov // Procedia Engineering 150. 2016. C. 260 265.
- 17. Fominykh A.V. Energy-Saving Shut-Off and Regulating Device / I.R. Chinyaev S.A., Sykhov // Procedia Engineering 150. 2016. C. 277 282.